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AIM
To determine optimal sampling strategies to allow the calculation of clinical
pharmacokinetic parameters for selected antipsychotic medicines using a
pharmacometric approach.

METHODS
This study utilized previous population pharmacokinetic parameters of the
antipsychotic medicines aripiprazole, clozapine, olanzapine, perphenazine,
quetiapine, risperidone (including 9-OH risperidone) and ziprasidone. D-optimality
was utilized to identify time points which accurately predicted the pharmacokinetic
parameters (and expected error) of each drug at steady-state. A standard two stage
population approach (STS) with MAP-Bayesian estimation was used to compare area
under the concentration–time curves (AUC) generated from sparse optimal time
points and rich extensive data. Monte Carlo Simulation (MCS) was used to simulate
1000 patients with population variability in pharmacokinetic parameters. Forward
stepwise regression analysis was used to determine the most predictive time points
of the AUC for each drug at steady-state.

RESULTS
Three optimal sampling times were identified for each antipsychotic medicine. For
aripiprazole, clozapine, olanzapine, perphenazine, risperidone, 9-OH risperidone,
quetiapine and ziprasidone the CV% of the apparent clearance using optimal
sampling strategies were 19.5, 8.6, 9.5, 13.5, 12.9, 10.0, 16.0 and 10.7, respectively.
Using the MCS and linear regression approach to predict AUC, the recommended
sampling windows were 16.5–17.5 h, 10–11 h, 23–24 h, 19–20 h, 16.5–17.5 h,
22.5–23.5 h, 5–6 h and 5.5–6.5 h, respectively.

CONCLUSION
This analysis provides important sampling information for future population
pharmacokinetic studies and clinical studies investigating the pharmacokinetics of
antipsychotic medicines.

WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• Antipsychotic medicines are widely prescribed for the

management of schizophrenia. However there are high rates of
discontinuation, drug switching and dose adjustment which in
part is due to the large inter-individual variability in response to
these medicines.

• Pharmacometric approaches to determine pharmacokinetic
parameters using sparse sampling strategies are increasing.
However the optimal sampling time points which determine
the precision and accuracy of these parameters are typically not
taken into account.

• Aside from clozapine, therapeutic drug monitoring strategies
for other antipsychotic medicines are not implemented in
hospital settings routinely and this is in part due to the lack of
clearly defined exposure–response relationships.

WHAT THIS STUDY ADDS
• This analysis has utilized pharmacometric tools to provide

optimal sampling time points for future population PK/PD
studies, guidance for therapeutic drug monitoring and to allow
clinicians practical solutions to calculate complex
pharmacokinetic parameters when interpreting exposure to
antipsychotic medicines.

• Bayesian population PK estimates using sparse but optimal time
points yield excellent correlations and only small errors when
compared with extensive sampling strategies.

• Trough concentrations only provide modest correlations to
exposure of antipsychotic drugs except in the case of clozapine,
where there is an excellent correlation, and this may relate to
difficulties establishing exposure–response relationships of
other antipsychotic medicines.
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Introduction

Antipsychotic medicines are utilized widely in the man-
agement of mental health disorders, including schizophre-
nia, schizoaffective disorder, bipolar disorder and major
depression [1, 2]. However, The Clinical Antipsychotic
Trials of Intervention Effectiveness (CATIE), the largest
randomized controlled trial investigating antipsychotic
therapy in patients with schizophrenia, found that 74% of
patients discontinued the study medicine before 18
months due to lack of efficacy and/or intolerable side
effects [3]. There are several factors that are important in
the discontinuation of antipsychotic medicines among
patients with schizophrenia, but medication efficacy
is a key component [4–8]. The wide variability in the
pharmacokinetics of these drugs, which often results in
significant differences in pharmacodynamics, is consid-
ered to be a key contributor to medication efficacy [9, 10].
Therefore, there is increasing interest in pharmacome-
tric approaches such as population pharmacokinetic/
pharmacodynamic (PK/PD) studies for quantifying
patient variability in response to antipsychotic medicines
[3, 11, 12].

Population pharmacokinetics is a useful approach
to identify covariates (e.g. age, gender, genetic
polymorphisms) that have a significant impact on drug
disposition [13, 14]. An advantage of the population
approach over traditional pharmacokinetic analysis is that
sparse, rather than rich data can be used to obtain accu-
rate estimates of PK/PD model parameters. However, the
precision and accuracy of these parameters is dependent
on the time of sample collection amongst a number of
other factors [15–19]. D-optimality (optimal sampling) is an
underutilized pharmacometric tool that identifies the
optimal blood sampling times that maximize the precision
and accuracy of the pharmacokinetic or pharmaco-
dynamic parameters to be estimated [20–22]. Importantly,
optimal sampling has been utilized to design effective
population pharmacokinetic studies in a number of
disease areas, including infectious disease, oncology and
paediatrics [23–28]. However, there are no studies report-
ing optimal sampling strategies for future population
PK/PD studies with antipsychotics.

Pharmacokinetic studies with optimized sampling
times provide insights that can improve therapeutic drug
monitoring (TDM), which, however, remains a controver-
sial topic for antipsychotic medicines [29]. TDM is recom-
mended for clozapine, due largely to its potentially fatal
toxicities, whereas for most others it has limited clinical
uptake [30]. The basis of TDM is to identify a plasma or
blood drug concentration window, typically based on a
single trough concentration, which is reflective of actual
drug exposure and ultimately, drug response. The gold
standard for measurement of exposure to a drug is the
area under the blood or plasma concentration–time
curve (AUC), but this usually requires extensive blood

sampling to quantify accurately. Therefore, generating
population estimates of AUC using a sparse number of
blood samples can be of great value because one can
more efficiently correlate drug exposure with drug
effects.

The aim of this study was to determine optimal sam-
pling strategies to estimate the pharmacokinetic param-
eters of antipsychotic medicines using pharmacometric
approaches. In addition, we propose algorithms and sam-
pling windows to calculate rapidly AUCs for antipsychotics
that may be useful to clinicians for monitoring patient
compliance and to enhance the value of TDM of
antipsychotics or changes in drug exposure with time.

Methods

Study design
Population parameter estimates of clearance, volume of
distribution and absorption rates of several antipsychotic
medications commonly used in ambulatory patients with
schizophrenia or schizoaffective disorder were extracted
from published studies in order to conduct the blood sam-
pling optimization analyses. The strategy used, population
pharmacokinetic studies accessed and the population
models we utilized to analyze the respective data are pre-
sented in Supplementary Figure S1 and Supplementary
Table S1 [3, 31–48].

Data selection
The CATIE trials developed population PK models of
the antipsychotic medicines olanzapine, perphenazine,
quetiapine, risperidone and ziprasidone in the largest
cohort of patients with schizophrenia enrolled in a
randomized trial to date [3]. Therefore, to reduce variability
between studies in modelling strategy and patient selec-
tion for optimal sampling, the PK models and parameters
from the CATIE data were used when possible. For
aripiprazole and clozapine, separate population PK mod-
elling studies were used [35, 38]. Only one published
abstract was available for the population PK of
paliperidone, but it was excluded from the analysis due to
the complexity of the model [43]. Table 1 outlines the
pharmacokinetic parameters extracted and used for our
analyses. As the CATIE data for each antipsychotic drug has
been analyzed previously to produce pharmacokinetic
models and published in several manuscripts, we selected
the most recently published study [3, 31, 33, 35, 37, 38, 48].
Typically, different doses were prescribed to subjects
within a study, and therefore the dose we selected in the
current analysis was the median prescribed dose. This is
not anticipated to impact on the pharmacokinetic values
chosen as these drugs display linear pharmacokinetics in
the range of typically prescribed dose range.

Optimal sampling of antipsychotic medicines
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Population pharmacokinetic models
The population PK models were all one compartment
models with first order absorption and elimination as
depicted in Supplementary Figure S2. Risperidone and its
major active metabolite 9-OH risperidone were modelled
as separate one compartment pharmacokinetic models
utilizing data from extensive CYP2D6 metabolizers only.
Three pharmacokinetic parameters estimated in each
analysis were apparent clearance (CL/F), the apparent
volume of distribution (V/F) and the absorption rate con-
stant (ka). Notable changes were made to the population
parameters described by some previous studies, specifi-
cally in the residual error models and covariance-variance
between CL/F and V/F. The residual error model describes
differences between observed and model predicted
values after accounting for the inter-individual variability.
Whereas some studies indicated a proportional error or
additive error model, in the current analysis, all drugs were
assigned mixed error models including both additive and
proportional components ((Y): σ = SDslope Y + SDintercept) in
which SDslope and SDintercept are the variance parameters. The
additive error was set as the lower limit of drug concentra-
tion quantification of each antipsychotic medicine based
on the drug assay recorded in the publication. The propor-
tional error was set at 0.15 (15% coefficient of variation) for
all antipsychotic medicines assuming that this would be
the expected, unexplained error in a well-controlled clini-
cal study investigating the pharmacokinetics of anti-
psychotic medicines. The simulations included inter-
individual variability (CV%) in CL/F and V/F and when una-
vailable, an estimate of 50% was assumed. In order to
maintain realistic concentrations and PK parameters the
covariance-variance of the apparent clearance (CL/F) and
volume of distribution (V/F) was included for the simula-
tions and population analysis. When covariance-variance
values for CL/F and V/F were not available, a modest cor-
relation of 0.2 was assumed.

Optimal sampling (D-optimality)
Optimal sampling times were determined using the
SAMPLE Module of the ADAPT 5 software program
(Biomedical Simulations Resource, University of Southern
California) based on the D-optimality criterion (minimiza-
tion of parameter uncertainty). The theoretical basis of
D-optimality based optimal sampling has been described
previously in detail [49]. As explained by Jamsen et al., an
optimal design (i.e. set of blood concentration sampling
times) for a population pharmacokinetic model is the
design that which will maximize the determinant of the
population Fisher information matrix, thereby minimizing
the standard errors (i.e. maximizing the precision) of the
parameter estimates [25]. The optimal sampling times
selected were based on the drug concentrations from the
dose interval once steady-state for the drug had been
reached (verified by visual inspection).

To conduct the optimal sampling analysis for each
drug, 0.5 h sampling time intervals within the respective
dosing interval of each drug were optimized. As one com-
partment models were employed for all drugs, each model
consisted of three parameters (CL/F, V/F, ka) and therefore
three sampling time points were detected that were
optimal for estimating each of these parameters respec-
tively. To ensure the ‘optimal’ times were selected and to
test the sensitivity of these, the times were varied and
re-tested to assess the bias (CV%) and the D-optimality
criterion was compared. These time points consisted of
intervals at 0.5 h prior to the optimally selected times.

Monte Carlo simulations
Monte Carlo simulation (MCS) incorporating prior defined
inter-individual variability and residual error was imple-
mented using the SIM option with population error in
ADAPT V. In order to have reasonable power and variabil-
ity, 1000 patients were simulated at 0.5 h time points
to steady-state. Previous studies have indicated that

Table 1
Pharmacokinetic parameters of atypical antipsychotic medicines and inter-individual variability (IIV) based on population studies

Parameter Aripiprazole Clozapine† Olanzapine Perphenazine
Risperidone and
9-OH risperidone† Quetiapine Ziprasidone

Dose (mg) 30 200 20 25 5 400 80
Dosing Interval (h) 24 12 24 24 24 12 12

CL/F (apparent clearance) (l h−1) (IIV) 2.37 (30.5) 36.7 (44.5) 26.1 (68.0) 483 (50.0)* 65.4 (56.6) & 8.83 104 (78.0) 122 (64.8)
V/F (apparent volume of distribution) (l) (IIV) 192 (31.6) 950 (50.0)* 2150 (86.0) 18200 (50.0)* 444 (36.1) (for both) 653 (100.0) 1060 (104.4)

ka (absorption rate constant) (h−1) (IIV) 1.06 (Fixed) 0.8 (fixed) 0.5 (fixed) 1.6 (fixed) 1.7 (fixed) & (kf) = 0.595
(metabolite fraction)

2.0 (141.0) 0.5 (Fixed)

t1/2 (half-life) (h) 56.2 17.9 33 9.5 8.5 7.0 7.0

SD1slope (proportional residual error) 0.15 0.15 0.15 0.15 0.15 0.15 0.15
SD1int (additive residual error) 0.0001 0.025 0.00025 0.0001 0.0001 0.025 0.0005

Reference (Kim et al.)
[38]

(Ismail et al.)
[35]

(Bigos et al.)
[31]

(Jin et al.)
[37]

(Feng et al.)
[70]

(Bigos et al.)
[3]

(Wessels et al.)
[48]

*Fixed at 50.0% no IIV data given or fixed in study. †Extensive CYP2D6 metabolizers utilized for this data.
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steady-state drug concentrations can be assumed to be
the drivers of the exposure−response relationship [50]. In
order to calculate the ‘true’ AUC, this was incorporated as a
secondary parameter based on numerical integration
within ADAPT.

Standard two stage with MAP-Bayesian
estimation
Population analysis using the standard two stage (STS)
option and maximum a posteriori Bayesian (MAP) was used
in ADAPT V. The initial extensive sampling time points
(every 0.5 h) were replaced by the optimal sampling time
points identified using D-optimality. The AUC(0,τ) was cal-
culated for each individual based on the optimal sampling
strategy and compared with the AUC(0,τ) obtained from
extensive sampling analysis in order to calculate the
CV% error.

Proposed sampling algorithms
The AUC(0,τ) obtained from each participant in the MCS
was used as a dependent variable in a forward stepwise
linear regression analysis where each 0.5 h time point
was used as an independent variable. The CV% was
reported as: {(True AUC(0,τ) – estimated AUC(0,τ))/True
AUC(0,τ)}*100. Based on the regression analysis, a
concentration−time algorithm which relates the most pre-
dictive time−concentration data points to the ‘true
AUC(0,τ)’ was conducted for the four best sampling time
points for each drug. The algorithm for the trough concen-
tration was also presented. Selection of the best sampling
strategy was based on consideration of the correlation
coefficient (r2) and the reduction in the CV%. An additional
time point was deemed as significantly improving the
sampling strategy if it resulted in an increase in the r2 of
0.02 and/or decrease in the CV% of 5.

Selection of ‘sampling windows’
The recommended hourly sampling window was built on
the MCS used to determine the proposed sampling algo-
rithms by identifying the best consecutive combination of
three time points (each separated by at least 0.5 h interval),
which determined the AUC(0,τ). The best subsets
approach was used in linear regression to identify this and
was based on assessment of the strongest correlation and
lowest CV% for each concentration−time point.

Statistical methods
The AUC was determined based on numerical integration
techniques in ADAPT V. Forward stepwise regression
analysis was used to assess the most predictive time points
of the AUC(0,τ). The best subsets approach using linear
regression analysis was used to identify the most impor-
tant sampling window based on correlation of each con-
centration time point to AUC(0,τ). Pearson’s correlation

coefficient (r2) was used to assess the strength of relation-
ships between variables. SYSTAT v13.0 was used to calcu-
late mean, standard deviations, 95% confidence intervals
and precision as a CV% of the pharmacokinetic param-
eters. Calculation of absolute bias was based on the
methods recommended by Sheiner & Beal, i.e. the sum of
the root mean square of the error √(predicted – true)2

divided by the number of subjects [51]. R statistical
program was used to structure data files for standard two
stage population analysis. Microsoft Excel 2013 was used
to create graphics.

Results

Antipsychotic medicines
Table 1 outlines the dose, dosing interval and
pharmacokinetic parameters utilized in the optimal sam-
pling analysis [3, 31, 33, 35, 37, 38, 48]. The standard dose
ranges and regimens for each drug were quite different.
Aripiprazole, olanzapine, perphenazine and risperidone
are prescribed at relatively low doses daily. The dosing
ranges for clozapine, quetiapine and ziprasidone are
higher and they are dosed twice daily. Variability in the
pharmacokinetics of the seven antipsychotic medicines
was also large. The ka, which was typically fixed in most
population studies ranged from 0.5 h−1 (olanzapine and
ziprasidone) to 2.0 h−1 (quetiapine), a 4-fold variation.
The Vd/F ranged from 444 l (risperidone) to 18200 l
(perphenazine), a 40-fold variation, while the CL/F ranged
from 2.37 l h−1 (aripiprazole) to 483 l h−1 (perphenazine), a
200-fold variation.

Optimal sampling
The pharmacokinetic models analyzed were all one com-
partment models with three pharmacokinetic parameters
(CL/F, V/F and ka). The time points selected by optimal
sampling analysis are shown in Table 2 and Figure 1. For all
drugs, a time point was selected in the absorption phase,
distribution/metabolism phase and elimination phase,
respectively. The range of the time point in the absorption
phase was 0.2–1.1 h, for distribution/metabolism the
range in time points was 1.0–8.4 h and in the elimination
phase the range of the time points was 12.0–24.0 h post-
dose. Table 2 shows the pharmacokinetic parameter
values and the CV% (expected error) associated with each
parameter based on the selected sampling time points.
The lowest CV% for the CL/F based on the optimal sam-
pling time points identified was, in order, clozapine (8.6%),
olanzapine (9.5%), 9-OH risperidone (10.0%), ziprasidone
(10.7%), risperidone (12.9%), perphenazine (13.5%),
quetiapine (16.0%) and aripiprazole (19.5%). The CV%s for
the V/F and ka were relatively high for all antipsychotic
medicines due to the nature of the study design (i.e. sam-
pling at steady-state and the sparse optimal sampling
strategy). The second sampling strategy chosen to indicate

Optimal sampling of antipsychotic medicines
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the sensitivity of the optimal times is shown in Table 2.
Figure 1 shows a visual representation of the optimal sam-
pling times selected following attainment of steady-state
for each antipsychotic medicine.

Monte Carlo simulation and population
analysis with MAP-Bayesian estimation
MCS was used to simulate 1000 subjects at 0.5 h time
points with inter-individual variability and population
error for each antipsychotic medication. The minimum
and maximum ranges of the apparent clearance for
aripiprazole (2.12–5.27 l h−1), clozapine (6.47–223.91 l h−1),
olanzapine (2.29–117.96 l h−1), perphenazine (112.21–
2298.49 l h−1), quetiapine (80.16–142.34 l h−1), risperidone
(50.0–90.29 l h−1), 9-OH risperidone (4.22–20.59 l h−1) and
ziprasidone (18.90–832.10 l h−1) were comparable with
previous studies, indicating that simulation accurately
reflected previous population analysis. Using the same
subjects generated from the MCS, a STS population analy-
sis with MAP-Bayesian estimation was conducted using
the three sampling times identified by optimal sampling.
Table 3 shows the MAP-Bayesian predicted AUC(0,τ),
expected CV%, correlation (r2), bias and precision of the
prediction generated from the extensive sampling.
Overall, the optimal sampling strategies using the popula-
tion STS with MAP-Bayesian estimation performed very
well with CV% of the AUC(0,τ) ranging from 1.30%
(perphenazine) to 15.65% (quetiapine). Similarly, the cor-
relation between the ‘true’ AUC(0,τ) and optimal sampling
AUC(0,τ) was excellent for most antipsychotic medicines
with a range of 0.80 (aripiprazole) to 1.00 (perphenazine)
with the exception of risperidone (r2 = 0.55).

Proposed sampling algorithms
The subjects generated from MCS were utilized to identify
concentration−time algorithms using a biostatistics
approach to predict AUC(0,τ) for each antipsychotic medi-
cine. Table 4 shows the forward stepwise linear regression
results for the most predictive time points taking into
account one, two, three, four and trough sampling strate-
gies where concentrations at the selected time points are
related to AUC(0,τ) numerically. The AUC(0. τ), r2, precision
(CV%) and the bias (absolute value of the AUC(0,τ)) are
shown. The average AUC(0,τ) of the simulated subjects
for aripiprazole, clozapine, olanzapine, perphenazine,
risperidone, 9-OH risperidone, quetiapine and zipra-
sidone was 9.46 μg ml−1 h, 7.22 μg ml−1 h, 1.09 μg ml−1 h,
63.0 μg l−1 h, 77.0 μg l−1 h, 0.60 μg ml−1 h, 4.91 μg ml−1 h
and 0.90 μg ml−1 h, respectively. The best sampling strat-
egy was based on consideration of the CV%, bias and
Pearson’s correlation (r2) as described in the methods. For
aripiprazole, a four sampling time point strategy was rec-
ommended (2.16 + 5.13*(20 h) + 5.10*(17 h) + 5.05*(21 h) +
4.73*(19.5 h)) (CV% of 4.9, bias of 0.46 and r2 of 0.90), for
clozapine, a two sampling strategy (1.10 + 6.19*(10 h) +
5.56*(11.5 h)) (CV% of 10.0, bias of 0.79 and r2 of 0.97), for
olanzapine, a three sampling strategy (−0.060 + 8.94*(16 h)
+ 11.61*(20h) + 10.86*(23 h)) (CV% of 13.3, bias of 0.07 and
r2 of 0.86), for perphenazine, a three sampling strategy
(0.006 + 9.06*(20 h) + 6.75*(5 h) + 7.76*(17.5 h)) (CV% of
8.7, bias of 0.005 and r2 of 0.93), for quetiapine, a four
sampling strategy (0.486 + 3.27*(6h) + 2.20*(3.5 h) +
3.53*(6.5 h) + 1.43*(0.5 h)) (CV% of 6.3, bias of 0.49 and r2 of
0.94), for risperidone, a four sampling strategy (0.048 +
6.26*(17 h) + 5.00*(15 h) + 4.09*(13 h) + 3.02*(11 h)) (CV%

Table 2
Optimal sampling time points, and secondary sampling set (italicized), of atypical antipsychotic medicines and the expected error on pharmacokinetic
parameters based on defined sampling time points during steady-state dosing interval

Drug
Optimal sampling time points
(time after dose in h)

Pharmacokinetic parameters and expected standard error
CL/F (l h−1) (CV%) V/F (l) (CV%) ka (h−1) (CV%) t1/2 (h) (CV%)

Aripiprazole 0.9; 3.9; (trough 23–24) 2.37 (19.50) 192.0 (178.5) 1.06 (354.2) 56.15 (181.5)

0.5; 3.5; 23.5 (21.0) (173.2) (433.1) (174.3)
Clozapine 1.1; 4.6; (trough 11–12) 36.7 (8.64) 950.0 (85.93) 0.80 (136.7) 17.94 (83.59)

0.5; 4.0; 11.5 (8.78) (81.63) (164.0) (78.71)

Olanzapine 1.7; 8.4; (trough 23–24) 26.1 (9.45) 2150.0 (86.82) 0.50 (164.6) 59.14 (93.29)

1.0; 8.0; 23.5 (9.20) (86.08) (174.2) (92.24)
Perphenazine 0.5; 3.5; (trough 23–24) 483.0 (13.46) 18200 (56.02) 1.60 (117.9) 26.12 (53.06)

0; 3.0; 23.5 (13.45) (54.03) (257.9) (50.02)

Risperidone 0.2; 1; 18.4 65.4 (12.92) 444.0 (19.48) 1.7 (31.26) 4.70 (14.13)

0; 0.5; 18.0 (44.41) (72.92) (93.65) (31.07)
9-OH risperidone 1.5; 7.5; (trough 23–24) 8.83 (9.95) 444.0 (75.01) 0.595 (136.9) 34.85 (71.82)

1.0; 7.0; 23.5 (10.0) (75.11) (137.9) (71.84)

Quetiapine 0.3; 2.4; (trough 11–12) 104.0 (15.97) 653.0 (31.33) 2.00 (55.43) 4.35 (27.95)

0; 2.0; 11.5 (16.24) (30.77) (73.39) (26.43)
Ziprasidone 1.1; 5.9; (trough 11–12) 122.0 (10.69) 1060.0 (65.01) 0.50 (88.74) 6.02 (59.03)

0.5; 5.5; 11.5 (13.24) (64.11) (89.32) (58.83)
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of 4.1, bias of 0.003 and r2 of 0.75), for 9-OH risperidone, a
three sampling strategy (0.113 + 7.63*(20 h) + 7.86*23.5 h)
+ 7.04*(19 h)) (CV% of 5.8, bias of 0.034 and r2 of 0.91) and
for ziprasidone, a two sampling strategy (7.31*(6 h) +
3.75*(0.5 h)) (CV% of 8.3, bias of 0.09 and r2 of 0.95). The
strongest correlation between trough concentration time
point and AUC(0,τ) was shown for clozapine (r2 = 0.93, bias
of 1.09 and CV% of 13.0) and olanzapine (r2 = 0.79, bias of
0.30 and CV% of 17.2). The weakest correlation between
trough concentration time point and AUC(0,τ) was for
quetiapine (r2 = 0.63, bias of 2.72 and CV% of 41.2). The
algorithms generated (i.e. the concentration−time algo-
rithm to predict AUC) allow for rapid calculation of the
AUC after obtaining drug concentration at various times
specified.

Identification of sampling windows
Figure 2 depicts the hourly sampling windows for each
antipsychotic drug; aripiprazole (16.5–17.5 h), clozapine
(10–11 h), olanzapine (23–24 h), perphenazine (19–20 h),

risperidone (16.5–17.5 h), 9-OH risperidone (22.5–23.5 h),
quetiapine (5–6 h) and ziprasidone (5.5–6.5 h). The corre-
lation coefficients (r2) for the best subset of consecutive
time points for the prediction of AUC are displayed in
Figure 2: aripiprazole (0.51, 0.45, 0.48), clozapine (0.90,
0.90, 0.86), olanzapine (0.72, 0.72, 0.71), perphenazine
(0.81, 0.81, 0.81), risperidone (0.43, 0.46, 0.41), 9-OH
risperidone (0.74, 0.74, 0.76), quetiapine (0.77, 0.77, 0.79)
and ziprasidone (0.90, 0.91, 0.90).

Discussion

The clinical use of antipsychotic medicines is often very
difficult given the wide variability in their PK/PD, the large
choice of potentially efficacious medicines available and
the challenging patients in which they are used. Newer
and more sophisticated approaches to drug and dose
selection and/or dose adjustment are urgently needed to
improve antipsychotic efficacy and clinical outcomes [52,
53]. Pharmacometric tools have been utilized in this analy-
sis to inform the study design of future population
pharmacokinetic studies investigating currently used
antipsychotic medicines, and also to provide clinicians
with guidance regarding TDM strategies that can be
implemented in clinical situations. The results demon-
strate that there is wide variability in the optimal blood
concentration sampling strategies for commonly pre-
scribed antipsychotic medicines due to their diverse
pharmacokinetic profiles. This finding has broad implica-
tions for TDM, as well as drug and dose selection.

Previous studies investigating population PK/PD of
antipsychotic medicines have typically used sparse sam-
pling, but the effectiveness of the sampling schedules of
these studies has not been evaluated [3, 31, 33, 35–38,
46–48, 50, 54–56]. The current study recommends the col-
lection of samples at three time points for optimal sam-
pling of each antipsychotic medicine. This strategy
delivers the most reliable estimates of CL/F, V/F and ka, the
three parameters derived from the one compartment
models utilized in the analysis [20]. The CL/F parameter is
well estimated using the optimal sampling strategies
chosen, with CV% between 10% and 20% for all antipsy-
chotic drugs evaluated. Aside from risperidone and
quetiapine, the V/F and ka were not well estimated based
on the optimal sampling strategies presented and this is
most likely due to the study design and administration
route, i.e. these parameters are best estimated following
the first dose of a drug rather than at steady-state. The
sensitivity analysis of the optimal sampling time-points,
based on 0.5 h time points prior to the selected optimal
time points, indicates that although the CL parameter esti-
mated using optimal sampling strategy provides good
estimates for CL, for perphenazine and olanzapine the
second sampling strategy performed better. However,
there was much greater error in the parameter for ka. This

Table 3
MAP-Bayesian estimation to predict AUC with optimal sampling time
points

Population analysis
Optimal sampling time
points (h) AUC (μg l−1 h) CV%

Correlation
(r2)

Aripiprazole
(True average AUC(0,τ) = 9.46 ± 1.31)

Optimal sampling time points
(0.9, 3.9, 24)

9.48 6.70 0.80

Clozapine
(True average AUC(0,τ) = 14.72 ± 8.51)
Optimal sampling time points
(1.1, 4.6, 12)

14.75 ± 8.27 8.67 0.98

Olanzapine
(True average AUC(0,τ) = 1.09 ± 0.71 )

Optimal sampling time points
(1.7, 8.4, 24)

1.02 ± 0.59 11.90 0.90

Perphenazine
(True average AUC(0,τ) = 0.063 ± 0.031)
Optimal sampling time points
(0.5, 3.5, 24)

0.063 ± 0.029 1.30 1.00

Risperidone
(True average AUC(0,τ) = 0.077 ± 0.006)

Optimal sampling time points
(0.2,1,18.4)

0.077 ± 0.006 6.40 0.55

9-OH risperidone
(True average AUC(0,τ) = 0.597 ± 0.145)
Optimal sampling time points
(1.5,7.5, 24)

0.599 ± 0.139 6.90 0.92

Quetiapine
(True average AUC(0,τ) = 4.91 ± 2.21)

Optimal sampling time points
(0.3,2.4,12)

5.05 ± 2.28 15.65 0.93

Ziprasidone
(True average AUC(0,τ) = 0.90 ± 0.56)
Optimal sampling time points
(1.1, 5.9, 12)

0.91 ± 0.57 8.56 0.98
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Table 4
Identification and evaluation of predictive time points of the AUC for each drug

Drug Single time point Two time points Three time points Four time points
Trough time
point only

Aripiprazole
True mean of simulated AUC(0,τ) = 9.46 ± 1.31
Correlation (r2) 0.71 0.82 0.87 0.90 0.67
Precision (CV% of AUC) 7.8 6.2 5.5 4.9 8.1
Absolute bias (μg ml−1 h) 0.73 0.59 0.51 0.46 0.76
(95% CI) (0.69, 0.76) (0.56, 0.61) (0.49, 0.54) (0.44, 0.48) (0.73, 0.80)
Concentration−time algorithms to predict AUC 4.92 +

12.53 (20 h)
3.43 +
8.37 (20 h) +
8.01 (17 h)

2.74 +
6.33 (20 h) +
6.23 (17 h) +
5.85 (21 h)

2.16 +
5.13 (20 h) +
5.10 (17 h) +
5.05 (21 h) +
4.73 (19.5 h)

5.34 +
11.95 (24 h)

Clozapine
True mean of simulated AUC0-tau = 7.22 ± 4.17
Correlation 0.95 0.97 0.98 0.98 0.93
Precision (CV% of AUC) 13.0 10.0 9.0 8.0 13.0
Absolute bias (μg ml−1 h−1) 1.00 0.79 0.68 0.61 1.09
(95% CI) (0.94, 1.05) (0.75, 0.83) (0.64, 0.71) (0.57, 0.64) (1.02, 1.15)
Concentration−time algorithms to predict AUC 1.33 +

11.02 (10 h)
1.10 +
6.19 (10 h) +
5.56 (11.5 h)

1.06 +
4.29 (10 h) +
3.61 (11.5 h) +
3.85 (10.5 h)

0.92 +
3.34 (10 h) +
3.33 (11.5 h) +
3.33 (10.5 h) +
2.61 (9.5 h)

1.61 +
11.24 (12 h)

Olanzapine
True mean of simulated AUC(0,τ) = 1.09 ± 0.71
Correlation (r2) 0.82 0.85 0.86 0.86 0.79
Precision (CV% of AUC) 16.0 14.1 13.3 13.0 17.2
Absolute bias (μg ml−1 h−1) 0.18 0.09 0.07 0.07 0.30
(95% CI) (0.167, 0.182) (0.088, 0.098) (0.064, 0.071) (0.062, 0.069)
Concentration−time algorithms to predict AUC 0.007 +

29.54 (20 h)
−0.021 +
16.47 (20 h) +
14.44 (23 h)

−0.060 +
8.94 (16 h) +

11.61 (20 h) −
10.86 (23 h)

−0.059 +
6.86 (16 h) +
9.66 (20 h) −
8.73 (23 h) +
6.52 (24 h)

0.065 +
29.66 (24 h)

Perphenazine
True mean of simulated AUC0-tau = 0.063 ± 0.031
Correlation (r2) 0.82 0.90 0.93 0.95 0.77
Precision (CV% of AUC) 15.2 10.6 8.7 7.4 17.1
Absolute bias (μg ml−1 h−1) 0.009 0.006 0.005 0.005 0.010
(95% CI) (0.008, 0.009) (0.006, 0.007) (0.005, 0.005) (0.004, 0.005) (0.010, 0.011)
Concentration−time algorithms to predict AUC 0.02 +

20.84 (20 h)
0.006 +

13.89 (20 h) +
8.92 (5 h)

0.006 +
9.06 (20 h)
6.75 (5 h)
7.76 (17.5 h)

0.004 +
6.80 (20 h) +
5.32 (5 h)
5.60 (17.5 h)
5.99 (13 h)

0.024 +
21.09 (24 h)

Risperidone
True mean of simulated AUC(0,τ) = 0.077 ± 0.007
Correlation (r2) 0.46 0.61 0.70 0.75 0.71
Precision (CV% of AUC) 5.7 4.9 4.5 4.1 6.0
Absolute bias (μg ml−1 h−1) 0.004 0.003 0.003 0.003 0.005
(95% CI) (0.004, 0.004) (0.003, 0.004) (0.003, 0.003) (0.003, 0.003) (0.004, 0.005)
Concentration–time algorithms to predict AUC 0.063 +

13.47 (17 h)
0.057 +
9.40 (17 h) +
7.24 (15 h)

0.052 +
7.45 (17 h) +
5.92 (15 h) +
4.66 (13 h)

0.048 +
6.26 (17 h) +
5.00 (15 h) +
4.09 (13 h) +
3.02 (11 h)

0.070 +
18.97 (24 h)

9-OH risperidone
True mean of simulated AUC(0,τ) = 0.597 ± 0.145
Correlation (r2) 0.77 0.87 0.91 0.93 0.74
Precision (CV% of AUC) 9.3 6.8 5.8 4.9 10.1
Absolute bias (μg ml−1 h−1) 0.055 0.041 0.034 0.029 0.057
(95% CI) (0.052, 0.057) (0.039, 0.043) (0.032, 0.036) (0.028, 0.031) (0.054, 0.060)
Concentration–time algorithms to predict AUC 0.190 +

18.59 (20 h)
0.141 +

10.81 (20 h) +
10.68 (23.5 h)

0.113 +
7.63 (20 h) +
7.86 (23.5 h) +
7.04 (19 h)

0.105 +
5.75 (20 h) +
6.11 (23.5 h) +
5.70 (19 h) +
5.58 (23 h)

0.218 +
18.84 (24 h)

V. Perera et al.

806 / 78:4 / Br J Clin Pharmacol



was expected because time point selection is based on
minimizing error in all parameters rather than CL alone.
The optimal sampling module in ADAPT could be consid-
ered an ‘individual sampling approach’, one that suggests
optimal times for a given vector of pharmacokinetic
parameter point estimates. In this application of optimal
sampling, we used the central/modal population PK
parameters to derive suggested sampling times (and then
tested performance of these sampling strategies when
applied to the full population). Other optimal sampling
software packages determine strategies based on the
pharmacokinetic parameter likelihood distributions in the
population [17, 22, 57–59]. In our experience the two
approaches agree well, on minimalistic designs and the
population approach has a major advantage when we are
able to consider more samples per subject (how best to
split several ‘late’ samples, for example). The two optimal
sampling approaches also are more similar when inter-
individual variability on CL/F is small to moderate and are
more likely to differ when inter-individual variability on
CL/F is large.

The population approach presented here obtained the
AUC(0,τ) at steady-state generated on the basis of the
three optimal sampling time points for each antipsychotic
medicine using a standard two stage MAP-Bayesian popu-
lation approach, and compared this with the extensive
sampling time points based on MCS used to generate the
pharmacokinetic parameters. As expected, only minor dif-
ferences were seen between the two strategies when pre-
dicting the AUC in each subject with correlations (r2)
between 0.55 and 1.00 and precision (CV%) between

1.30% and 15.65%. The absolute bias was also reported
and gives an indication of the systematic error involved
with the algorithms. The correlation between the MAP-
driven estimate of risperidone AUC(0,τ) and the true
AUC(0,τ) was modest (0.55), and this could be due to the
high inter-individual variability in the population, despite
only using extensive metabolizers of CYP2D6 in the analy-
sis, but requires further exploration [33]. This demon-
strates the advantage of using a Bayesian population
approach with prior information, which can use existing
data to inform others in the population set, in order to
estimate pharmacokinetic parameters in an individual
with only sparse data. MAP-Bayesian population
approaches have been widely used to individualize dose in
a range of therapeutic areas [60–63].

Using MCS and linear regression, a concentration−time
algorithm up to four time points was suggested to identify
the most important times for predicting AUC. This
approach was tailored towards clinicians without access to
pharmacometric tools who are interested in investigating
dose optimization or TDM strategies. The recommenda-
tion of how many time points were required was based on
consideration of both the correlation with AUC and the
expected error (CV%). This method allows clinicians
designing clinical studies for dose optimization to consider
sparse sampling strategies and the most important times
to collect these samples. Interestingly, this analysis also
has implications for TDM which is traditionally conducted
by measuring a trough concentration [29, 64]. The correla-
tion with AUC using a single trough concentration
for aripirazole, clozapine, olanzapine, perphenazine,

Table 4
Continued

Drug Single time point Two time points Three time points Four time points
Trough time
point only

Quetiapine
True mean of simulated AUC(0,τ) = 4.91 ± 2.21

Correlation (r2) 0.79 0.88 0.91 0.94 0.63

Precision (CV% of AUC) 29.7 14.4 13.1 6.3 58.7

Absolute bias (μg ml−1 h−1) 1.437 0.809 0.705 0.486 2.718

(95% CI) (1.378, 1.496) (0.769, 0.849) (0.672, 0.739) (0.460, 0.511) (2.635, 2.801)

Concentration–time algorithms to predict AUC 8.88 (6 h)
(r2 = 0.79)

5.35 (6 h) +
3.94 (3.5 h)
(r2 = 0.88)

3.48 (6 h) +
3.07 (3.5 h) +
3.45 (6.5 h)
(r2 = 0.91)

3.27 (6 h) +
2.20 (3.5 h) +
3.53 (6.5 h) +
1.43 (0.5 h)
(r2 = 0.94)

10.35 (12 h)
(r2 = 0.63)

Ziprasidone
True mean of simulated AUC(0,τ) = 0.90 ± 0.56
Correlation (r2) 0.91 0.95 0.97 0.98 0.71
Precision (CV% of AUC) 14.0 8.3 6.6 7.2 41.2
Absolute bias (μg ml−1 h−1) 0.147 0.090 0.070 0.080 0.428
(95% CI) (0.138, 0.155) (0.085, 0.096) (0.066, 0.074) (0.075, 0.085) (0.409, 0.446)
Concentration–time algorithms to predict AUC 9.91 (6 h) 7.31 (6 h) +

3.75 (0.5 h)
3.98 (6 h) +
3.35 (0.5 h) +
4.09 (6.5 h)

2.19 (6 h) +
3.02 (0.5 h) +
3.24 (6.5 h) +
2.19 (5 h)

11.48 (12 h)

AUC units reported in μg ml−1 h. Pearson’s correlation used for r2. Root mean square of the error used as absolute bias estimate. Time in h.
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Simulated pharmacokinetic profiles of antipsychotic medicines indicating optimal sampling time points
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Figure 2
Hourly sampling windows reflecting most appropriate times to capture AUC interval of each antipsychotic medicine. , Concentration (μg ml−1); ,
correlation (r2)
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risperidone, 9-OH risperidone, quetiapine and ziprasidone
were 0.67, 0.93, 0.79, 0.77, 0.71, 0.74, 0.63 and 0.71, respec-
tively. The bias in the trough concentration estimate
of AUC was also high relative to other specified
concentration−time points, indicating that there may be
significant deviation from the true value of AUC using
these algorithms. Thus, trough concentration shows
modest correlations with AUC with high expected error,
except in the case of clozapine, which is the only drug with
an established therapeutic trough concentration range
and is commonly measured in clinical practice. For other
antipsychotic drugs including olanzapine, TDM remains
controversial with most studies concluding no clear
exposure−response relationship [30, 65, 66]. However, if
we consider that the trough concentration used in these
studies is not an optimal indication of exposure then a
relationship to response may not provide a clear reproduc-
ible result. Further evaluation is necessary to determine
the change in concentration necessary to cause a change
in response or toxicity and prospective PK/PD studies may
be able to determine this. The calculation of AUC at steady-
state, which is a gold standard measure of exposure,
is a physiologically plausible correlate or surrogate of
response. Previous studies in patients with schizophrenia
have indicated that average concentration at steady-state,
rather than peak concentrations may be related to average
D2-dopamine receptor occupancy [50]. Enabling clinicians
to gather information regarding a standard metric such as
AUC allows an easy comparison of adherence, inter-
individual and inter-occasional variability which is critical
to dose adjustment [67–69].

Typically in clinical settings, patients are available for
relatively short consultations and this may only allow for
the collection of one blood sample. Therefore, we have
suggested the optimal sampling windows (spanning an
hour) that give the most accurate calculation of AUC(0,τ).
This provides a practical and feasible approach to check
adherence and/or potential changes in drug metabolism
and disposition on a regular basis. This can be very impor-
tant considering the constant dose adjustment that is typi-
cally observed with antipsychotics.

This study has presented evidence for optimizing sam-
pling times to obtain pharmacokinetic parameters. The
optimal sampling times based on D-optimality provide an
ideal platform to design future population PK studies, the
MCS with an emphasis on identifying single time points
serve as a strategic method for future therapeutic drug
monitoring strategies in acute hospital situations, with or
without the aid of pharmacometric tools, whilst the sam-
pling window identification accounts for the outpatient
setting which clinicians may use in order to monitor
patients and generate robust measurements of exposure.
In the outpatient setting, the sampling windows provide a
similar precision for determining individual drug exposure
but allow greater flexibility for patient visits given the
nature of the typical clinical setting. Furthermore, the sam-

pling windows demonstrate good precision and accuracy
to identify individuals at the extreme ends of exposure to
these medications and therefore would be highly useful in
selecting drug and dose regimens.

There are some limitations that must be considered.
Many of the drugs studied here contain active metabolites
which contribute to drug efficacy, and therefore future
studies which simultaneously model both parent and
metabolite will need to be undertaken. Optimal sampling
times will be needed for both parent and metabolite to
understand their impact on patient response. The CATIE
trial, which formed the basis of the optimal sampling times
used in this analysis is considered quite ‘noisy’ data due to
the large number of subjects and clinical trial design and
thus the expected variability compared with a clinical
setting may be over-estimated. The use of optimal sam-
pling analysis to predict the best times to capture the best
pharmacokinetic data for a new drug of interest does
require knowledge of pharmacometrics. This is an emerg-
ing science in clinical settings and expertise in this area
may not be available to clinicians.

In conclusion, formalized approaches to guide antipsy-
chotic dosing would be highly valued by clinicians
working in mental health. This study identified optimal
sampling times for obtaining the pharmacokinetics of
antipsychotic medicines in individual patients. This infor-
mation and approach will enhance clinical trial design and
help establish the value of TDM of antipsychotic medicines
in psychiatry. The results indicate the potential to increase
the accuracy of estimated pharmacokinetic parameters,
particularly clearance and AUC, using the suggested
optimal sampling strategies. This study provides a guide-
line for researchers/pharmacometricians and clinicians to
undertake PK/PD studies that maximize information that is
gained regarding the exposure of patients to a drug. The
optimized and sparse sampling makes these studies
feasibile and thus minimizes invasiveness, patient discom-
fort and ultimately costs.
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